

Updated on: 11st December 2023

CERTIFICATE OF ANALYSIS

Lot#: CyHum19008-HE-C

PRODUCT DESCRIPTION

Reference: HuHECPMI/6+ Product: Cryopreserved Human Hepatocytes Category: Plateable, Cytochrome P450 inducible Spheroid qualified: NO (see details below: 3D Spheroid formation section) Isolation date: 21st November 2019 Initial Isolation Viability: 81.70% Storage conditions: -196°C using LN₂ Sterility test: negative for mycoplasma, bacteria yeast & fungi

DONOR DEMOGRAPHICS

Species	Gender	Race	Age	BMI	Smoker	Alcohol Use	Drug Use
Human	Male	Caucasian	72	36.51	No	Occasional	No
P	athology				Serological I	Data ¹	
L	iver mass			Tested nega	itive less than 3 m	onths before surge	ry

Patient informed consent was obtained. ¹The donor was serologically tested negative for following infectious diseases: HIV, Hepatitis B and C. Donor medical history was also examined prior to accepting this donor. *For donor's medication information, please contact us.*

CHARACTERIZATION FOR PLATEABLE CELLS

Post Thaw Lot information	Result	SD	
Number of viable cells (cells/vial):	6.74x10 ⁶	± 1.27x10 ⁶	5
Post-thaw viability (%):	89.8	± 4.83	5
Days in culture after thaw (24w):	4	± 0.00	1
Days in culture after thaw (96w):	3	± 0.00	1
MONOLAYER ASSESSMENT ² Plateable:	YES Conflu	ience: 92.5%	
Seeding density in 24 well recommended:	2.12x	10 ⁵ cells/cm ²	
Seeding density in 96 well recommended:	2.81x	10 ⁵ cells/cm ²	
Cell morphology 24h		Cell morphology	96h

Human hepatocytes were thawed and seeded according to BeCytes Biotechnologies culture protocol. The yield and viability were determined by a trypan blue exclusion assay after the thawing process. ²Resuspended human hepatocytes from post-thaw assessment were plated in collagen-coated 24-well plates in hepatocyte plating medium. Cells were refreshed with hepatocytes maintenance medium during the first change of medium on the day of thawing. Maintenance medium was replaced in the culture every day. If images from the 96-well plates are needed, please contact us.

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by BeCytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

3D SPHEROID FORMATION

Spheroid morphology

BeCytes **does not guarantee** that these primary hepatocytes will be suitable for 3D culture and creation of spheroid structures while using BeCytes protocols.

INDUCTION FOR PLATEABLE CELLS

PHASE I: CYP ACTIVITIES EXPRESSED IN pmol/min/mg protein (mean ± SD)

		Induction (Specific Activity)		
Enzyme	Basal Activity on day 1	Basal Activity on day 4	Induced Activity on day 4	n-Fold induction
CYP1A2	24.28 ± 1.03	0.53 ± 0.06	41.00 ± 6.01	77.55
CYP2B6	15.00 ± 0.32	0.51 ± 0.04	10.64 ± 3.61	21.02
CYP3A4	7.92 ± 0.03	1.72 ± 0.09	18.61 ± 2.53	10.83

Cryopreserved human hepatocytes were thawed and plated in 24well collagen I coated plates. Cells were overlaid with Matrigel[®] (Corning) in Human Hepatocyte Maintenance Medium at first medium change at day of thawing. Treatment (n=2 per compound) with vehicle control [0.15% (v/v) DMSO] or inducers (Rifampicin, β -Naphthoflavone and Phenobarbital) began 1-day post-plating and continued for 72 hours. At the end of induction, monolayers were rinsed with PBS and incubated with probe substrate solutions in culture media. See Table 1 for information on each probe substrate. Metabolites were quantified by LC-MS and normalized to protein content. The fold induction was calculated by dividing the induced activity by the vehicle basal activity on the same day in culture.

PHASE I: CYP450 mRNA induction

CYP (mRNA)	n-Fold Induction
CYP1A2	95
CYP2B6	3
CYP3A4	6

Cryopreserved human hepatocytes were thawed, plated in 24well collagen I coated plates in Hepatocyte Plating Medium. Cells were overlaid with Matrigel[®] (Corning) in Human Hepatocyte Maintenance Medium at first medium change at day of thawing. Maintenance medium was replaced in the cultures daily. Treatment (n=2 per compound) with vehicle control [0.15% (v/v) DMSO] or inducers (Rifampicin, β -Naphthoflavone and Phenobarbital) began 1-day postplating and continued for 72 hours. At the end of the treatment period, RNA was isolated for mRNA analysis.

Table 1. Substrates Phase I

Enzyme	Probe Substrate	Concentration (µM)	Incubation Time (min)	Metabolite
CYP1A2	Phenacetin	100	30	Acetaminophen
CYP2B6	Bupropion	500	30	Hydroxybupropion
CYP3A4	Midazolam	30	30	1-Hydroxymidazolam

PHASE II: UGTs & SULT ACTIVITIES 24h AFTER SEEDING EXPRESSED IN pmol/min/mg PROTEIN (mean ± SD)

Enzyme	Conjugate	pmol/min/mg
UGT	7-OH coumarin glucuronide	323.34 ± 50.80
SULT	7-OH coumarin sulfate	63.44 ± 14.01

Cryopreserved human hepatocytes were thawed, plated in 24well collagen I coated plates in Hepatocyte Plating Medium. Cells were overlaid with Matrigel® (Corning) in Human Hepatocyte Maintenance Medium at first medium change at day of thawing. On day 1, hepatocytes were incubated with 7-Hydroxycoumarin to assay for UDP-Glucuronosyltransferase (UGT) and Sulfotransferase (SULT) activities. See Table 2 for information on each probe substrate. Metabolites were quantified by LC-MS and normalized to protein content.

If you need help for an experiment, just contact us, our experts will be pleased to assist you.

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by BeCytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

CERTIFICATION:

The viability and performance of the primary human hepatocytes provided depend primarily on the use of appropriate media and reagents, as well as the use of sterile plastics. Likewise, proper handling protocols must be followed. Please note that if these parameters are not carefully considered, the cellular response obtained in the assays may be lower than expected.

Name	Tittle	Signature	Cytes Biotechnologies, S.L.	Date
Pilar Sainz de la Maza	Quality Manager	Plai four level	CYTES BOTECHNOLOGIES S.L	11/12/23

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by BeCytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

CELL COUNTING

Lot #: _____

Date: ___/___/

			OCV.	
Ινίς σ	RP	нол	.OGY	

Clear cytoplasmClear membranes

Rounded shapeMembrane blebbing

Cell swellingLipid droplets

Hardly any debrisPrevalent debris

TRYPAN BLUE COUNTING RESULTS

			NEUBA	UER CH	AMBER COUNT	ING	
Q1	02	Quadrant	Live cells	+	Dead cells		Total cells
		Quadrant 1		+		=	
		Quadrant 2		+		=	
		Quadrant 3		+		=	
		Quadrant 4		+		=	
Q3	Q4	Total		+		=	
VIABILITY YIELD (Total cells)	(Live c. (Total co x (Dilution	factor) x 10		m	Viability (%)	Fotal numbe	er of cells)
EEDING DENSI	ГҮ	cells x (Current vo	applicable when it is use plume) cells	d a Hemocy <u>ml</u> =	tometer	ume needea	l for your cells)
<u> </u>	TY of cells) (Total number of	*This factor (104) is a cells x (Current vo cells)	lume)	<u>ml</u> =	tometer ml (Volt		
(Desired number	TY of cells) (Total number of	*This factor (104) is a cells x (Current vo cells) oer dish or plat	lume) cells	ml= needed	tometer ml (Volt	ulate the	
(Desired number	FY of cells) (Total number of e final volume	*This factor (104) is a cells x (Current vo cells) oer dish or plat	uume) cells e to use (Volume	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed
<u>(Desired number</u> Keep in mind the volume to add: Brand	TY of cells) (Total number of e final volume (Total volu 24-well plate	*This factor (104) is a cells x (Current vo cells) oer dish or plat ne well) 96-well plate	vlume) cells e to use (Volume ml – (Cells total vc	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed
(Desired number Geep in mind the olume to add: Brand ThermoFisher	TY of cells) (Total number of e final volume (Total volume 24-well plate 1.90 cm ² /well	*This factor (10 ⁴) is a cells x (Current vo cells) oer dish or plat ne well) 96-well plate 0.32 cm ² /well	olume) cells e to use (Volume ml – (Cells total vo	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed
(Desired number Geep in mind the volume to add: Brand ThermoFisher Corning®	TY (Total number of the c final volume (Total volume) (Total volume) 24-well plate 1.90 cm ² /well 2.00 cm ² /well	*This factor (10 ⁴) is a cells x (Current vo cells) oer dish or plat ne well) 96-well plate 0.32 cm ² /well 0.36 cm ² /well	e to use (Volume ml – (Cells total vo	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed
(Desired number Geep in mind the olume to add: Brand ThermoFisher Corning® Falcon®	TY (Total number of a e final volume (Total volume (Total volum) 24-well plate 1.90 cm ² /well 1.90 cm ² /well 1.90 cm ² /well	*This factor (10 ⁴) is a <u>cells x (Current vo</u> cells) Der dish or plat ne well) 96-well plate 0.32 cm ² /well 0.36 cm ² /well 0.32 cm ² /well	e to use (Volume ml – (Cells total vo	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed
(Desired number Geep in mind the olume to add: Brand ThermoFisher Corning® Falcon® Eppendorf	TY (Total number of a e final volume (Total volume (Total volume) 24-well plate 1.90 cm ² /well 1.90 cm ² /well 2.08 cm ² /well	*This factor (10 ⁴) is a cells x (Current vo cells) oer dish or plat ne well) 96-well plate 0.32 cm ² /well 0.36 cm ² /well 0.32 cm ² /well 0.37 cm ² /well	olume) cells e to use (Volume ml – (Cells total vo	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed
<u>(Desired number</u> Keep in mind the volume to add: Brand ThermoFisher	TY (Total number of a e final volume (Total volume (Total volume) 24-well plate 1.90 cm ² /well 1.90 cm ² /well 2.08 cm ² /well	*This factor (10 ⁴) is a cells x (Current vo cells) oer dish or plat ne well) 96-well plate 0.32 cm ² /well 0.36 cm ² /well 0.32 cm ² /well 0.37 cm ² /well	olume) cells e to use (Volume ml – (Cells total vo	ml= needed	ntometer ml (Volu) and then calc	ulate the	needed

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by BeCytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

Parc Científic de Barcelona, C/Baldiri Reixac 4-8 | www.becytes.com | info@cytesbiotech.com | P.+34 934034553